Abstract: The precise control of quantum systems will play a major role in the reaizzation of atomtronic devices. Here we study models of dipolar bosons confined to 3 and 4 wells. The analysis considers both integra be and non-integrable regimes within the models. Through variation of the external field, we demonstrate how the triple-well system can be controlled between various "switched-on" and "switched-off" configurations and how the 4 -well system can be controlled to generate and encode a phase into a NOON state. We discuss the physical feasibility through use of ultracold dipolar atoms in BECS (3-wells) or optical superlattices (4-wells),

Integrable Multi-Well Hamiltonians [1]

The traditional Bose-Hubbard model is not integrable except for 2 - and ∞-sites). In [1] we propose a family of integrable multi-well ($n+m$) tunneling models. These models have additional long range interactions and in some cases (3 and 4 wells) are particular cases of the EBHM [2].

Switching device: 3-wells [3, 4]
Integrable triple well:

$$
H_{0}=U\left(N_{1}-N_{2}+N_{3}\right)^{2}+J_{1}\left(a_{1}^{\dagger} a_{2}+a_{1} a_{2}^{\dagger}\right)+J_{3}\left(a_{2}^{\dagger} a_{3}+a_{2} a_{3}^{\dagger}\right) .
$$

Conserved quantities: $\left[H_{0}, N\right]=0,\left[H_{0}, Q\right]=0,[N, Q]=0, \quad Q=J_{1}^{2} N_{3}+J_{3}^{2} N_{1}-J_{1} J_{3}\left(a_{1} a_{3}+a_{3} a_{1}\right)$ The charge Q provides an $H_{\text {eff }}$ which, in the resonant regime ($U N / J \gg 1$) yields analytical formulae.

This model is a particular integrable case of the system for dipolar bosons (EBHM) presented in [2]:

$$
\mathcal{H}=\frac{U_{0}}{2} \sum_{i=1}^{3} N_{i}\left(N_{i}-1\right)+\sum_{i=1}^{3} \sum_{j=1, j, j \neq i}^{3} \sum_{i} \frac{U_{i j}}{2} N_{i} N_{j}+J_{1}\left(a_{1}^{\dagger} a_{2}+a_{1} \frac{a}{2}\right)+J_{3}\left(a_{2}^{\dagger} a_{3}+a_{2} a_{3}^{\dagger}\right) .
$$

on the geometry of the trap and $U=(\alpha-1) U_{0} / 4$.

Breaking the Integrability

$H=H_{0}+\varepsilon\left(N_{3}-N_{1}\right) \varepsilon:$ external field $\quad[H, Q] \neq 0$

Quantum dynamics:

Time evolution of expectation values. $\mathrm{N}=60, \mathrm{~J}=1, \varepsilon=0, U=0.001,0.015$ and 0.17 .
Tunneling through the gate is switched-off: resonant
Control of resonant tunneling:

Time evolution of expectrion vares $N=60, J=1, U=017, \varepsilon=0,02$, 017 . controlled while $<n_{2}>$ remains negigible.

Analytical expressions: (semi-classical analysis)

$$
\omega=\frac{2 \lambda \lambda_{1} J_{3}}{\sqrt{\Delta n}} \quad \Delta n=\frac{1}{\left(1+\gamma^{2}\right)} \quad \gamma=\frac{\left(\lambda\left(J_{1}^{2}-J_{3}^{2}\right)-2 \varepsilon\right)}{2 \lambda J_{1}}
$$

Tunnel Amplitude (Δn) vs. ε
Period (T) vs. ε

We give numerical simulations of the protocols to We give numerica simulations of the protocols to show that, for physically realistic settings where the fields are $F_{1}=\mid\left\langle\psi_{3}^{\prime}\right| \Phi_{3}^{\prime}| |>0.9 \quad F_{11}=\left|\left\langle\Psi_{4}^{\prime \prime} \mid \Phi_{4}^{\prime \prime}\right\rangle\right|>0.9$
where $|\Psi\rangle$ denotes the analytical states and $|\Phi\rangle$ the numerically state obtained by $\operatorname{EBHM}(2)$ time evolution. As the values remain almost constant for $P \theta \in[0, \pi]$, varying less than 1%, we display here only one case

$$
\begin{aligned}
& \begin{array}{llllllllll}
\text { Set } 2 & 0.964 & 0.991 & 0.920 & 0.0026 \mathrm{~s} & 0.0072 \mathrm{~s} & 2.8913 \\
\hline
\end{array}
\end{aligned}
$$

Table 1: Fidelities for Protocols I and II. Numerical calculations for $M=4$ and $P=11$.

$$
\text { Set 1: }\{U / \hbar=104.85, J / \hbar=71.62, \mu / \hbar=30.02\}(\text { in } \mathrm{Hz}
$$

A means to test the reliability of the system, through a statistical analysis of local measurement outcomes is directly built into the design. For both protocols, once the output state has been attained we can continue to let the system evolve under $U\left(t_{m}, 0,0\right)$. This yield the readout states that can be obtained analytically

Readout probabilities for Protocols I and II. Comparison between analytic and numerically-calculated probabilitis
for parameters of Set 1 for different values of $P \theta$

Physical feasibility

a) Traping scheme: the 2D square optical lttice is generated wit hwo sets of counterropagating laser beams crossing at 90° with the other. The superlatice of four-site model is achieved overlapping the 2D shor--lattice (cyan) and long-lattice (blue). The vertical lattice (orange) provides confinement in z direction. An additional 2D square long-lattice (green) is used to implement the integrability break control. b) Zoom into the region of the superlattice which contains the four-site plaquette. c) Breaking-of-integrability scheme. The system's integrabily can be broken by changing the plise imberes Δ beil 1

References

[1] L. Ymai et al, J. Phys. A50, 2017.
[2] T. Lahaye et al, Phy. Rev. Lett. 104,2010 .
[3] K. Wittmann et al, Communications Physics 1 (1), 2018 .
[4] A. Tonel e tal, SciPost Phys. Core 2 (003), 2020 .
[5] D. Gun et al, axiiv preprint axix:2004.11987.

