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Abstract: The precise control of quantum systems will play a major role in the realization of atomtronic
devices. Here we study models of dipolar bosons confined to 3 and 4 wells. The analysis considers both integra-
ble and non-integrable regimes within the models. Through variation of the external field, we demonstrate how
the triple-well system can be controlled between various “switched-on” and “switched-off” configurations and
how the 4-well system can be controlled to generate and encode a phase into a NOON state. We discuss the
physical feasibility through use of ultracold dipolar atoms in BECs (3-wells) or optical superlattices (4-wells).

Integrable Multi-Well Hamiltonians [1]
The traditional Bose-Hubbard model is not integrable (except for 2- and ∞- sites). In [1] we propose a family
of integrable multi-well (n + m) tunneling models. These models have additional long range interactions and
in some cases (3 and 4 wells) are particular cases of the EBHM [2].

Some multi-well geometric (n,m) models:
(2,1) (3,1) (2,2) (4,2) (5,1)

Switching device: 3-wells [3, 4]

Integrable triple well:

H0 = U(N1 − N2 + N3)2 + J1(a†1a2 + a1a†2) + J3(a†2a3 + a2a†3). (1)

Conserved quantities: [H0,N ] = 0, [H0,Q] = 0, [N ,Q] = 0, Q = J21N3 + J23N1 − J1J3(a†1a3 + a†3a1)
The charge Q provides an Heff which, in the resonant regime (UN/J >> 1) yields analytical formulae.

This model is a particular integrable case of the system for dipolar bosons (EBHM) presented in [2]:

H = U0
2

3∑
i=1

Ni(Ni − 1) + 3∑
i=1

3∑
j=1,j 6=i

Uij
2 NiNj + J1(a†1a2 + a1a†2) + J3(a†2a3 + a2a†3).

as long as the integrability condition U13 = U0 is satisfied. Also U12 = U23 = αU13, where 4 ≤ α ≤ 8 depends
on the geometry of the trap and U = (α− 1)U0/4.

Breaking the Integrability

J1 3J

U
y

H = H0+ ε (N3 − N1) ε : external field [H ,Q] 6= 0

Quantum dynamics:

UN � J UN ' J UN � J
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Time evolution of expectation values. N=60, J = 1, ε = 0, U=0.001, 0.015 and 0.17.
Tunneling through the gate is switched-off: resonant

Control of resonant tunneling:
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ε = 0 ε = 0.02
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ε = 0.17
Time evolution of expectation values. N=60, J = 1, U=0.17, ε=0, 0.02 and 0.17.
By applying the external field ε the tunneling amplitude between wells 1 and 3 and the frequency ω can be
controlled while < n2 > remains negligible.

Analytical expressions: (semi-classical analysis)

ω = 2λJ1J3√
∆n ∆n = 1

(1+γ2) γ = (λ(J2
1−J2

3 )−2ε)
2λJ1
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Physical feasibility:

Experimental scheme of the trapping geometry: three parallel lasers (blue) are crossed by a transverse beam
(green). The cigar-shapes, in red, represent a dipolar BEC trapped in a triple-well potential, and the green
internal arrows depict the orientation of the dipoles. The transverse beam performs the function of the external
field that controls the device. Its focus, when slowly displaced along the y-axis by ∆y changes the tilting of
wells 1 and 3 (breaking).

NOON states: 4-wells [5, 6]

Integrable Extended Bose-Hubbard Model (EBHM):

H = U0
2

4∑
i=1

Ni(Ni − 1) + 4∑
i=1

4∑
j=1,j 6=i

Uij
2 NiNj −

J
2

[
(a†1 + a†3)(a2 + a4) + (a1 + a3)(a†2 + a†4)

]
, (2)

An integrable 4-wells model [1] can be obtained from EBHM [2] as long as it complies with the integrability
condition U0 = U13 = U24 and U12 = U23 = U34 = U14.
Conserved quantities: [H ,N ] = [H ,Qk ] = [N ,Qk ] = 0, k = 1, 2. The charges Q1,Q2 provide an Heff which,
in the resonant regime U |M − P | � J , yields analytical formulae. Here U = (U12 − U0)/4.

NOON-state Protocols:
We describe two protocols that enable the generation of NOON states. For Protocol I the outcomes are
probabilistic while Protocol II are deterministic. Both protocols consider the initial state |Ψ0〉 = |M ,P , 0, 0〉
and are built around a general time evolution operator: (µ, ν : applied fields)

U(t, µ, ν) = exp
−

it
~

[H + µ(N2 − N4) + ν(N1 − N3)]


It is convenient to introduce the phase variable θ = 2µtµ/~, and to fix tν = ~π/(4Mν).

Protocol I
Here we employ breaking of integrability through an applied field µ(N4 − N2) to subsystem B = {2, 4} and a
measurement processM:
(i) |ΨI1〉 = U(tm − tµ, 0, 0) |Ψ0〉;
(ii) |ΨI2〉 = U(tµ, µ, 0) |ΨI1〉;
(iii) |ΨI3〉 =M|ΨI2〉,
where M = 0,M represents a projective measurement of the number of bosons at site 3 which heralds a
high-fidelity NOON state in subsystem B and tm = ~π/(2Ω), with Ω = J2/(4U((M − P)2 − 1)).
In an idealized limit tµ→ 0, µ→∞, with β = (−1)(N+1)/2

|ΨI
3〉 =



1√
2

β |M ,P , 0, 0〉 + e iPθ |M , 0, 0,P〉
 , r = 0,

1√
2

|0,P ,M , 0〉 − βe iPθ |0, 0,M ,P〉
 , r = M ,

(3)

These states are recognized as products of a NOON state for subsystem B = {2, 4} with Fock basis states for
subsystem A = {1, 3}.

Protocol II
Here the following sequence of steps are implemented to arrive at a NOON state in subsystem B = {2, 4} and
deterministic state in subsystem A = {1, 3}:
(i) |ΨII1〉 = U(tm − tν, 0, 0) |Ψ0〉;
(ii) |ΨII2〉 = U(tν, 0, ν) |ΨII1〉;
(iii) |ΨII3〉 = U(tm − tµ, 0, 0) |ΨII2〉;
(iv) |ΨII4〉 = U(tµ, µ, 0) |ΨII3〉.
where ν represent the breaking of integrability through an applied field ν(N3 − N1) to subsystem A = {1, 3}.
In an idealized limit µ, ν →∞, tµ, tν → 0, with Υ = β exp(i(Pθ − π/2)),

|ΨII
4〉 = 1√

2
 |M ,P , 0, 0〉 + Υ |M , 0, 0,P〉

 (4)

Fidelity and Readout probabilities:
We give numerical simulations of the protocols to show that, for physically realistic settings where the fields are
applied for finite times, high-fidelity outcomes for NOON state production persist. The fidelities are computed:

FI = | 〈ΨI
3|ΦI

3〉 | > 0.9 FII = | 〈ΨII
4|ΦII

4〉 | > 0.9
where |Ψ〉 denotes the analytical states and |Φ〉 the numerically state obtained by EBHM (2) time evolution.
As the values remain almost constant for Pθ ∈ [0, π], varying less than 1%, we display here only one case

FI FII Pθ = π/2
r = 0 r = M tµ tν tm

Set 1 0.986 0.997 0.974 0.0024 s 0.0065 s 6.1639 s
Set 2 0.964 0.991 0.920 0.0026 s 0.0072 s 2.8913 s

Table 1: Fidelities for Protocols I and II. Numerical calculations for M = 4 and P = 11.

Set 1: {U/~ = 104.85, J/~ = 71.62, µ/~ = 30.02} (in Hz)
Set 2: {U/~ = 105.60, J/~ = 104.95, µ/~ = 27.42} (in Hz)

A means to test the reliability of the system, through a statistical analysis of local measurement outcomes is
directly built into the design. For both protocols, once the output state has been attained we can continue to
let the system evolve under U(tm, 0, 0). This yields the readout states that can be obtained analytically

Readout probabilities for Protocols I and II. Comparison between analytic and numerically-calculated probabilities
for parameters of Set 1 for different values of Pθ

Physical feasibility:

a) Trapping scheme: the 2D square optical lattice is generated with two sets of counterpropagating laser beams
crossing at 90° with the other. The superlattice of four-site model is achieved overlapping the 2D short-lattice
(cyan) and long-lattice (blue). The vertical lattice (orange) provides confinement in z direction. An additional
2D square long-lattice (green) is used to implement the integrability break control. b) Zoom into the region
of the superlattice which contains the four-site plaquette. c) Breaking-of-integrability scheme. The system’s
integrability can be broken by changing the phase difference between the superlattice and the additional 2D
square long-lattice, effectively causing a potential imbalance ∆ between wells 1 and 3.
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